高三數學學業(yè)考試知識點歸納
機會從不會“失掉”,你失掉了,自有別人會得到。機會只不過是相對于充分準備而又善于創(chuàng)造機會的人而言的。沒有機會,就要創(chuàng)造機會;有了機會,就要巧妙地抓住機會,而高考就是你走上成功之路的第一個機會。小編給大家整理的高三數學學業(yè)考試知識點歸納,希望大家能夠喜歡!
高三數學學業(yè)考試知識點歸納1
一、柱、錐、臺、球的結構特征
結構特征
圖例
棱柱
(1)兩底面相互平行,其余各面都是平行四邊形;
(2)側棱平行且相等.
圓柱
(1)兩底面相互平行;(2)側面的母線平行于圓柱的軸;
(3)是以矩形的一邊所在直線為旋轉軸,其余三邊旋轉形成的曲面所圍成的幾何體.
棱錐
(1)底面是多邊形,各側面均是三角形;
(2)各側面有一個公共頂點.
圓錐
(1)底面是圓;(2)是以直角三角形的一條直角邊所在的直線為旋轉軸,其余兩邊旋轉形成的曲面所圍成的幾何體.
棱臺
(1)兩底面相互平行;(2)是用一個平行于棱錐底面的平面去截棱錐,底面和截面之間的部分.
圓臺
(1)兩底面相互平行;
(2)是用一個平行于圓錐底面的平面去截圓錐,底面和截面之間的部分.
球
(1)球心到球面上各點的距離相等;(2)是以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體.
二、簡單組合體的結構特征
三、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)
注:
正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;
側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。
四、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:
①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
五、柱體、錐體、臺體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長,h為高,h'為斜高,l為母線)
(3)柱體、錐體、臺體的體積公式
(4)球體的表面積和體積公式
高三數學學業(yè)考試知識點歸納2
一次函數的定義
一次函數,也作線性函數,在x,y坐標軸中可以用一條直線表示,當一次函數中的一個變量的值確定時,可以用一元一次方程確定另一個變量的值。
函數的表示方法
列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數之間的對應規(guī)律。
解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數之間的相依關系,但有些實際問題中的函數關系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達兩個變量之間的函數關系。
一次函數的性質
一般地,形如y=kx+b(k,b是常數,且k≠0),那么y叫做x的一次函數,當b=0時,y=kx+b即y=kx,所以說正比例函數是一種特殊的一次函數
注:一次函數一般形式y(tǒng)=kx+b(k不為0)
a)k不為0
b)x的指數是1
c)b取任意實數
一次函數y=kx+b的圖像是經過(0,b)和(-b/k,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看做直線y=kx平移|b|個單位長度得到。(當b>0時,向上平移;b<0時,向下平移)
高三數學學業(yè)考試知識點歸納3
不等式的解集:
①能使不等式成立的未知數的值,叫做不等式的解。
②一個含有未知數的不等式的所有解,組成這個不等式的解集。
③求不等式解集的過程叫做解不等式。
新一輪中考復習備考周期正式開始,_小編為各位初三考生整理了各學科的復習攻略,主要包括中考必考點、中考??贾R點、各科復習方法、考試答題技巧等內容,幫助各位考生梳理知識脈絡,理清做題思路,希望各位考生可以在考試中取得優(yōu)異成績!下面是《2018中考數學知識點:不等式的判定》,僅供參考!
不等式的判定:
①常見的不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
②在不等式“a>b”或“a
③不等號的開口所對的數較大,不等號的尖頭所對的數較小;
④在列不等式時,一定要注意不等式關系的關鍵字,如:正數、非負數、不大于、小于等等。